Comprehensive Review of Carbon Capture Technologies for Climate Change Mitigation
Abstract
The emissions of carbon dioxide (CO2) significantly contribute to the rise in global temperatures and the exacerbation of climate change. Various initiatives have been undertaken to reduce CO2 emissions, notably through the adoption of carbon capture technologies. These technologies include Carbon Capture and Utilization (CCU), Carbon Capture and Storage (CCS), and the integrated approach of Carbon Capture, Utilization, and Storage (CCUS). Our study aims to elucidate the operational principles of CCU, highlight the benefits of carbon capture, and provide recent updates on the application of CCU and CCS in daily contexts. Utilizing a qualitative descriptive methodology through a literature review, we examine the primary sources related to CCU and CCS from various databases such as Scopus, Springer, Taylor & Francis, and Google Scholar, covering the period from 2014 to 2024. As a novelty, our review covers physical techniques like absorption, gas or membrane separation, and pressure-temperature manipulation, alongside chemical methods such as the adsorption of amine compounds. Furthermore, biological techniques, including fixation, are also utilized. The operational framework of carbon capture technology is structured around three main processes: pre-combustion, post-combustion, and oxy-combustion. Notably, carbon capture technology incorporates the cultivation of microalgae as a fixation strategy, which promotes not only environmental sustainability but also shows significant promise for future applications. This method effectively sequesters large quantities of CO2 while requiring minimal nutritional resources. The advantages of utilizing microalgae include enhanced efficiency in CO2 fixation compared to terrestrial plants, reduced contamination, and a relatively simple operational structure. It is evident that the adoption of carbon capture technology is expected to increase in the coming years, particularly in light of the ongoing challenges posed by climate change. Prospective advancements in carbon capture technology are then discussed based on the review result. Thus, our literature review contributes to promoting the broader implementation of carbon capture technologies.
Downloads
References
Al-Mamoori, A., Krishnamurthy, A., Rownaghi, A. A., & Rezaei, F. (2017). Carbon capture and utilization update. Energy Technology, 5(6), 834–849. https://doi.org/10.1002/ente.201600747
Allangawi, A., Alzaimoor, E. F., Shanaah, H. H., Mohammed, H. A., Saqer, H., El-Fattah, A. A., & Kamel, A. H. (2023). Carbon capture materials in post-combustion: adsorption and absorption-based processes. C Journal of Carbon Reserach, 9(1), 17. https://doi.org/10.3390/c9010017
Amount, O., & Bopp, L. (2006). Globalizing results from ocean in situ iron fertilization studies. Global Biogeochemical Cycle, 20(2), 20. https://doi.org/https://doi.org/10.1029/2005GB002591
Bashir, A., Ali, M., Patil, S., Aljawad, M. S., Mahmoud, M., Al-Shehri, D., Hoteit H., & Kamal, M. S. (2024). Comprehensive review of CO2 geological storage: Exploring principles, mechanisms, and prospects. Earth-Science Reviews, 249, 104672. https://doi.org/10.1016/j.earscirev.2023.104672
Ben-Mansour, R., Habib, M. A., Bamidele, O. E., Basha, M., Qasem, N. A. A., Peedikakkal, A., Laoui T., & Ali, M.J (2016). Carbon capture by physical adsorption: Materials, experimental investigations and numerical modeling and simulations - A review. Applied Energy, 161, 225–255. https://doi.org/10.1016/j.apenergy.2015.10.011
Best, D., Mulyana, R., Jacobs, B., Iskandar, U. P., & Beck, B. (2011). Status of CCS development in Indonesia. Energy Procedia, 4, 6152-6156. https://doi.org/10.1016/j.egypro.2011.02.624
Chiang, C. L., Lee, C. M., & Chen, P. C. (2011). Utilization of the Cyanobacteria Anabaena sp. CH1 in Biological Carbon Dioxide Mitigation Processes. Bioresource Technology, 102(9), 5400–5405. https://doi.org/10.1016/j.biortech.2010.10.089
Chiu, S. Y., Kao, C. Y., Tsai, M. T., Ong, S. C., Chen, C. H., & Lin, C. S. (2009). Lipid accumulation and CO2 utilization of Nannochloropsis oculata in response to CO2 aeration. Bioresource Technology, 100(2), 833–838. https://doi.org/10.1016/j.biortech.2008.06.061
Cuéllar-Franca, R. M., & Azapagic, A. (2015). Carbon capture, storage and utilisation technologies: A critical analysis and comparison of their life cycle environmental impacts. Journal of CO2 utilization, 9, 82-102.
Daneshvar, E., Wicker, R. J., Show, P. L., & Bhatnagar, A. (2022). Biologically-mediated carbon capture and utilization by microalgae towards sustainable CO2 biofixation and biomass valorization – A review. Chemical Engineering Journal, 427(April 2021), 130884. https://doi.org/10.1016/j.cej.2021.130884
Global CCS Institute. (2022). Global Status of CCS 2022 : Global CCS Institute Report. Global CCS Institute.
Hanson, E., Nwakile, C., & Hammed, V. O. (2024). Carbon Capture, Utilization, and Storage (CCUS) technologies: Evaluating the effectiveness of advanced CCUS solutions for reducing CO2 emissions. Results in Surfaces and Interfaces, 18, 100381. https://doi.org/10.1016/j.rsurfi.2024.100381
Lam, M. K., Lee, K. T., & Mohamed, A. R. (2012). Current status and challenges on microalgae-based carbon capture. International Journal of Greenhouse Gas Control, 10, 456–469. https://doi.org/10.1016/j.ijggc.2012.07.010
Li, G., Xiao, W., Yang, T., & Lyu, T. (2023). Optimization and process effect for microalgae carbon dioxide fixation technology applications based on carbon capture: A comprehensive review. C Journal of Carbon Research, 9(1), 35. https://doi.org/10.3390/c9010035
Li, S., Li, X., & Ho, S.-H. (2022). How to enhance carbon capture by evolution of microalgal photosynthesis? Separation and Purification Technology, 291, 120951. https://doi.org/http://dx.doi.org/10.1016/j.seppur.2022.120951
Liu, X., Liu, X., & Zhang, Z. (2024). Application of red mud in carbon capture, utilization and storage (CCUS) technology. Renewable and Sustainable Energy Reviews, 202, 114683.
Madejski, P., Chmiel, K., Subramanian, N., & Kuś, T. (2022). Methods and techniques for CO2 capture: Review of potential solutions and applications in modern energy technologies. Energies, 15(3), 887. https://doi.org/10.3390/en15030887
Markewitz, P., Kuckshinrichs, W., Leitner, W., Linssen, J., Zapp, P., Bongartz, R., Schreiber A., & Müller, T. E. (2012). Worldwide innovations in the development of carbon capture technologies and the utilization of CO2. Energy and Environmental Science, 5(6), 7281–7305. https://doi.org/10.1039/c2ee03403d
Mondal, M., Goswami, S., Ghosh, A., Oinam, G., Tiwari, O. N., Das, P., Gayen, K., Mandal, M.K. & Halder, G. N. (2017). Production of biodiesel from microalgae through biological carbon capture: a review. 3 Biotech, 7(2), 1–21. https://doi.org/10.1007/s13205-017-0727-4
Morais, M. G. De, Alberto, J., & Costa, V. (2007). Isolation and selection of microalgae from coal fired thermoelectric power plant for biofixation of carbon dioxide. Energy Conversion and Management, 48(7), 2169–2173. https://doi.org/https://doi.org/10.1016/j.enconman.2006.12.011
Olaizola, M., & Bridges, T. (2004). Microalga removal of CO2 from flue gases: CO2 capture from a coal combustor. Biotechnology and Bio-Process Engineering, 8, 360-367.
Ota, M., Kato, Y., Watanabe, H., Watanabe, M., Sato, Y., Smith, R. L., & Inomata, H. (2009). Fatty acid production from a highly CO2 tolerant alga, Chlorocuccum littorale, in the presence of inorganic carbon and nitrate. Bioresource Technology, 100(21), 5237–5242. https://doi.org/10.1016/j.biortech.2009.05.048
PPID KLHK RI. (2022, Oktober 2). Enhanced NDC: Komitmen Indonesia untuk makin berkontribusi dalam menjaga suhu global. https://ppid.menlhk.go.id/berita/siaran-pers/6836/enhanced-ndc-komitmen-indonesia-untuk-makin-berkontribusi-dalam-menjaga-suhu-global
Prayitno, J., Admirasari, R., Sudinda, T. W., & Winanti, W. S. (2021). Teknologi penangkatan karbon dengan mikroalga: Peluang dan tantangan dalam mitigasi perubahan iklim. Jurnal Rekayasa Lingkungan, 14(2), 91–100.
Prescouter. (2024). The top 10 carbon capture projects in 2024. Prescouter. https://www.prescouter.com/report/top-ten-carbon-capture-projects-2024/
Rubin, E. S., Mantripragada, H., Marks, A., Versteeg, P., & Kitchin, J. (2012). The outlook for improved carbon capture technology. Progress in Energy and Combustion Science, 38(5), 630–671. https://doi.org/10.1016/j.pecs.2012.03.003
Singh, J., & Dhar, D. W. (2019). Overview of carbon capture technology: Microalgal biorefinery concept and state-of-the-art. Frontiers in Marine Science, 6, 1–9. https://doi.org/10.3389/fmars.2019.00029
Sreenivasulu, B., Gayatri, D. V., Sreedhar, I., & Raghavan, K. V. (2015). A journey into the process and engineering aspects of carbon capture technologies. Renewable and Sustainable Energy Reviews, 41, 1324–1350. https://doi.org/10.1016/j.rser.2014.09.029
Sydney, E. B., Sturm, W., de Carvalho, J. C., Thomaz-Soccol, V., Larroche, C., Pandey, A., & Soccol, C. R. (2010). Potential carbon dioxide fixation by industrially important microalgae. Bioresource Technology, 101(15), 5892–5896. https://doi.org/10.1016/j.biortech.2010.02.088
US Energy Information Administration. (2016). International Energy Outlook 2016. US Energy Information Administration.
Valdovinos-García, E. M., Juan Barajas-Fernández, María de los Ángeles Olán-Acosta, Moisés Abraham Petriz-Prieto, Adriana Guzmán-López, & Micael Gerardo Bravo-Sánchez. (2020). Techno-Economic Study of CO 2 Capture of a Thermoelectric Plant Using Microalgae (Chlorella vulgaris) for Production of Feedstock for Bioenergy. Energies, 13(2), 1–19.
Wang, B., & Lan, C. Q. (2010). Biofixation of carbon dioxide (CO2) by microorganisms. Developments and Innovation in Carbon Dioxide (CO2), 2, 411–432. https://doi.org/10.1533/9781845699581.4.411
World Health Organization. (2021). WHO global air quality guidelines. World Health Organization. https://www.who.int/publications/i/item/9789240034228
Zhang, Z., Borhani, T. N. G., & El-Naas, M. H. (2018). Carbon Capture. In I. Dincer, A. Midilli, & M. A. Rosen (Eds.), Exergetic, energetic and environmental dimensions (pp. 455–478). Elsevier. https://doi.org/10.1016/B978-0-12-813734-5.00056-1
Zhao, S., Liu, P., Niu, Y., Chen, Z., Khan, A., Zhang, P., & Li, X. (2018). A novel early warning system based on a sediment microbial fuel cell for in situ and real time hexavalent chromium detection in industrial wastewater. Sensors (Switzerland), 18(2), 1–15. https://doi.org/10.3390/s18020642
Copyright (c) 2025 Vita Meylani, Nundang Busaeri, Ocky Karna Radjasa, Nurul Hiron, Frista Mutiara

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.