Harnessing Carbon Trading and Life Cycle Assessments for Renewable Energy Transition in Southeast Asia

  • Stevanus Hendriarto Verdano Konsora Teknologi
  • Yusril Sudiro Abdul Manap Department of Mechanical Engineering, RWTH-Aachen University, Aachen
  • Yussuf Eddo Runtukahu Verdano Konsora Teknologi
  • Romualdus Nugraha Catur Utomo Verdano Konsora Teknologi
Keywords: CO2 emissions, renewable energy, carbon trading, life cycle assessments, Southeast Asia

Abstract

The climate crisis, caused by fossil fuel dependence and deforestation, poses significant socio-economic and environmental challenges for Southeast Asia, including reduced agricultural productivity and increased health risks. Our study aims to fill this gap by assessing how renewable energy can mitigate these impacts, focusing on the region's potential and the mechanisms needed to support this energy transition. Through a structured review of peer-reviewed articles, government reports, and data from intergovernmental organizations, we analyzed Southeast Asia's renewable energy potential and the roles of carbon trading and life cycle assessments (LCA) as enabling mechanisms. Our findings reveal that, despite projected increases in CO₂ emissions from 1.4 gigatons (Gt) in 2018 to nearly 2.4 Gt by 2040, Southeast Asia has set ambitious targets to reduce energy consumption by 23% and increase renewable energy to 22.1% within the same timeframe. Achieving these goals will require robust, adaptive policies that incentivize renewable investment and promote regional cooperation. Carbon trading and LCA are identified as pivotal tools, providing financial motivation for emission reductions and offering frameworks to assess the environmental impacts of energy projects. In conclusion, this study suggests that Southeast Asia’s renewable energy adoption, supported by sustainable practices like carbon trading and LCA, could significantly advance both global climate mitigation and socio-economic resilience within the region.

Downloads

Download data is not yet available.

References

Abbass, K., Qasim, M. Z., Song, H., Murshed, M., Mahmood, H., & Younis, I. (2022). A review of the global climate change impacts, adaptation, and sustainable mitigation measures. Environmental Science and Pollution Research, 29(28), 42539–42559. https://doi.org/10.1007/s11356-022-19718-6

ACE. (2020). The 6th ASEAN Energy Outlook (AEO6). ASEAN Centre for Energy (ACE).

Ajibade, H., Ujah, C. O., Nnakwo, K. C., & Kallon, D. V. V. (2024). Improvement in battery technologies as panacea for renewable energy crisis. Discover Applied Sciences, 6(7), 374. https://doi.org/10.1007/s42452-024-06021-x

Aleluia, J., Tharakan, P., Chikkatur, A. P., Shrimali, G., & Chen, X. (2022). Accelerating a clean energy transition in Southeast Asia: Role of governments and public policy. Renewable and Sustainable Energy Reviews, 159, 112226. https://doi.org/10.1016/j.rser.2022.112226

Attanayake, K., Wickramage, I., Samarasinghe, U., Ranmini, Y., Ehalapitiya, S., Jayathilaka, R., & Yapa, S. (2024). Renewable energy as a solution to climate change: Insights from a comprehensive study across nations. PLOS ONE, 19(6), e0299807. https://doi.org/10.1371/journal.pone.0299807

Badiola, M., Basurko, O. C., Gabiña, G., & Mendiola, D. (2017). Integration of energy audits in the Life Cycle Assessment methodology to improve the environmental performance assessment of Recirculating Aquaculture Systems. Journal of Cleaner Production, 157, 155–166. https://doi.org/10.1016/j.jclepro.2017.04.139

Bakhtyar, B., Sopian, K., Sulaiman, M. Y., & Ahmad, S. A. (2013). Renewable energy in five South East Asian countries: Review on electricity consumption and economic growth. Renewable and Sustainable Energy Reviews, 26, 506–514. https://doi.org/10.1016/j.rser.2013.05.058

Bertrand, S. (2021). Fact sheet | Climate, environmental, and health impacts of fossil fuels. Environmental and Energy Study Institute. https://www.eesi.org/papers/view/fact-sheet-climate-environmental-and-health-impacts-of-fossil-fuels-2021

Caetano, N. S., Martins, F. F., & Oliveira, G. M. (2024). Life cycle assessment of renewable energy technologies. In The Renewable Energy-Water-Environment Nexus (pp. 37–79). Elsevier. https://doi.org/10.1016/B978-0-443-13439-5.00002-8

Campbell-Lendrum, D., Neville, T., Schweizer, C., & Neira, M. (2023). Climate change and health: Three grand challenges. Nature Medicine, 29(7), 1631–1638. https://doi.org/10.1038/s41591-023-02438-w

Carleton, T. A., & Hsiang, S. M. (2016). Social and economic impacts of climate. Science, 353(6304). https://doi.org/10.1126/science.aad9837

Chang, Y., & Phoumin, H. (2021). Harnessing Wind Energy Potential in ASEAN: Modelling and Policy Implications. Sustainability, 13(8), 4279. https://doi.org/10.3390/su13084279

Chau, C. K., Leung, T. M., & Ng, W. Y. (2015). A review on Life Cycle Assessment, Life Cycle Energy Assessment and Life Cycle Carbon Emissions Assessment on buildings. Applied Energy, 143, 395–413. https://doi.org/10.1016/j.apenergy.2015.01.023

Chen, A., Giese, M., & Chen, D. (2020). Flood impact on mainland Southeast Asia between 1985 and 2018—The role of tropical cyclones. Journal of Flood Risk Management, 13(2). https://doi.org/10.1111/jfr3.12598

Chopra, R., Magazzino, C., Shah, M. I., Sharma, G. D., Rao, A., & Shahzad, U. (2022). The role of renewable energy and natural resources for sustainable agriculture in ASEAN countries: Do carbon emissions and deforestation affect agriculture productivity? Resources Policy, 76. https://doi.org/10.1016/j.resourpol.2022.102578

Dalapati, G. K., Ghosh, S., Sherin P A, T., Ramasubramanian, B., Samanta, A., Rathour, A., Wong, T. K. S., Chakrabortty, S., Ramakrishna, S., & Kumar, A. (2023). Maximizing solar energy production in ASEAN region: Opportunity and challenges. Results in Engineering, 20, 101525. https://doi.org/10.1016/j.rineng.2023.101525

Do, T. N., Burke, P. J., Nguyen, H. N., Overland, I., Suryadi, B., Swandaru, A., & Yurnaidi, Z. (2021). Vietnam’s solar and wind power success: Policy implications for the other ASEAN countries. Energy for Sustainable Development, 65, 1–11. https://doi.org/10.1016/j.esd.2021.09.002

Dong, W. S., Ismailluddin, A., Yun, L. S., Ariffin, E. H., Saengsupavanich, C., Abdul Maulud, K. N., Ramli, M. Z., Miskon, M. F., Jeofry, M. H., Mohamed, J., Mohd, F. A., Hamzah, S. B., & Yunus, K. (2024). The impact of climate change on coastal erosion in Southeast Asia and the compelling need to establish robust adaptation strategies. Heliyon, 10(4). https://doi.org/10.1016/j.heliyon.2024.e25609

Eekhout, J. P. C., & De Vente, J. (2022). Global impact of climate change on soil erosion and potential for adaptation through soil conservation. Earth-Science Reviews, 226. https://doi.org/10.1016/j.earscirev.2022.103921

Erdiwansyah, Mamat, R., Sani, M. S. M., & Sudhakar, K. (2019). Renewable energy in Southeast Asia: Policies and recommendations. Science of The Total Environment, 670, 1095–1102. https://doi.org/10.1016/j.scitotenv.2019.03.273

Gielen, D., Boshell, F., Saygin, D., Bazilian, M. D., Wagner, N., & Gorini, R. (2019). The role of renewable energy in the global energy transformation. Energy Strategy Reviews, 24, 38–50. https://doi.org/10.1016/j.esr.2019.01.006

Gutiérrez-Negrín, L. C. A. (2024). Evolution of worldwide geothermal power 2020–2023. Geothermal Energy, 12(1), 14. https://doi.org/10.1186/s40517-024-00290-w

Ha, T. V., Uereyen, S., & Kuenzer, C. (2023). Agricultural drought conditions over mainland Southeast Asia: Spatiotemporal characteristics revealed from MODIS-based vegetation time-series. International Journal of Applied Earth Observation and Geoinformation, 121. https://doi.org/10.1016/j.jag.2023.103378

Habib-ur-Rahman, M., Ahmad, A., Raza, A., Hasnain, M. U., Alharby, H. F., Alzahrani, Y. M., Bamagoos, A. A., Hakeem, K. R., Ahmad, S., Nasim, W., Ali, S., Mansour, F., & El Sabagh, A. (2022). Impact of climate change on agricultural production; Issues, challenges, and opportunities in Asia. Frontiers in Plant Science, 13. https://doi.org/10.3389/fpls.2022.925548

Handayani, K., Anugrah, P., Goembira, F., Overland, I., Suryadi, B., & Swandaru, A. (2022). Moving beyond the NDCs: ASEAN pathways to a net-zero emissions power sector in 2050. Applied Energy, 311. https://doi.org/10.1016/j.apenergy.2022.118580

Hassan, Q., Viktor, P., J. Al-Musawi, T., Mahmood Ali, B., Algburi, S., Alzoubi, H. M., Khudhair Al-Jiboory, A., Zuhair Sameen, A., Salman, H. M., & Jaszczur, M. (2024). The renewable energy role in the global energy transition. Renewable Energy Focus, 100545. https://doi.org/10.1016/j.ref.2024.100545

Holden, W. N., & Marshall, S. J. (2018). Climate change and typhoons in the Philippines: Extreme weather events in the anthropocene. In Integrating Disaster Science and Management (pp. 407–421). Elsevier. https://doi.org/10.1016/B978-0-12-812056-9.00024-5

Huang, W., Gao, Q.-X., Cao, G., Ma, Z.-Y., Zhang, W.-D., & Chao, Q.-C. (2016). Effect of urban symbiosis development in China on GHG emissions reduction. Advances in Climate Change Research, 7(4), 247–252. https://doi.org/10.1016/j.accre.2016.12.003

International Energy Agency (IEA). (2019). Southeast Asia Energy Outlook 2019. International Energy Agency.

International Renewable Energy Agency (IRENA) & ASEAN Centre for Energy (ACE).. Renewable energy outlook for ASEAN: Towards a regional energy transition (2nd ed.), International Renewable.

Jones, M. W., Peters, G. P., Gasser, T., Andrew, R. M., Schwingshackl, C., Gütschow, J., Houghton, R. A., Friedlingstein, P., Pongratz, J., & Le Quéré, C. (2023). National contributions to climate change due to historical emissions of carbon dioxide, methane, and nitrous oxide since 1850. Scientific Data, 10(1), 155. https://doi.org/10.1038/s41597-023-02041-1

Khine, M. M., & Langkulsen, U. (2023). The implications of climate change on health among vulnerable populations in South Africa: a systematic review. International Journal of Environmental Research and Public Health, 20(4), 3425. https://doi.org/10.3390/ijerph20043425

Lawson, M., Phua, D., Rogers, C., Meng, S., Robinson, P., Chiu, P., & Thomas-Walters, L. (2023). Developing carbon trading markets in Southeast Asia. King & Wood Mallesons. https://www.kwm.com/global/en/insights/latest-thinking/development-of-carbon-trading-markets-in-southeast-asia.html

Magnan, A. K., Pörtner, H.-O., Duvat, V. K. E., Garschagen, M., Guinder, V. A., Zommers, Z., Hoegh-Guldberg, O., & Gattuso, J.-P. (2021). Estimating the global risk of anthropogenic climate change. Nature Climate Change, 11(10), 879–885. https://doi.org/10.1038/s41558-021-01156-w

Michaelowa, A., Michaelowa, K., Hermwille, L., & Espelage, A. (2022). Towards net zero: Making baselines for international carbon markets dynamic by applying ‘ambition coefficients.’ Climate Policy, 22(9–10), 1343–1355. https://doi.org/10.1080/14693062.2022.2108366

Michaelowa, A., Shishlov, I., & Brescia, D. (2019). Evolution of international carbon markets: Lessons for the Paris Agreement. WIREs Climate Change, 10(6). https://doi.org/10.1002/wcc.613

Malaysian Investment Development Authority (MIDA). (2023). Renewable energy capacity targeted at 70% by 2050. Malaysian Investment Development Authority. https://www.mida.gov.my/mida-news/renewable-energy-capacity-targeted-at-70-by-2050/

Müller, L. J., Kätelhön, A., Bachmann, M., Zimmermann, A., Sternberg, A., & Bardow, A. (2020). A guideline for life Cycle Assessment of carbon capture and utilization. Frontiers in Energy Research, 8, 15. https://doi.org/10.3389/fenrg.2020.00015

Odermatt, C. C. (2023). Feed-in tariffs for solar energy in Thailand. International Journal of Economic Policy in Emerging Economies, 18(3-4), 363–380. https://doi.org/10.1504/IJEPEE.2023.136305

Pambudi, N. A., & Ulfa, D. K. (2024). The geothermal energy landscape in Indonesia: A comprehensive 2023 update on power generation, policies, risks, phase and the role of education. Renewable and Sustainable Energy Reviews, 189, 114008. https://doi.org/10.1016/j.rser.2023.114008

Pereira, J. J., & Shaw, R. (2022). Southeast Asia: An Outlook on Climate Change. In J. J. Pereira, M. K. Zain, & R. Shaw (Eds.), Climate Change Adaptation in Southeast Asia (1–24). Springer Singapore. https://doi.org/10.1007/978-981-16-6088-7_1

Qazi, A., Hussain, F., Rahim, N. Abd., Hardaker, G., Alghazzawi, D., Shaban, K., & Haruna, K. (2019). Towards sustainable energy: a systematic review of renewable energy sources, technologies, and public opinions. IEEE Access, 7, 63837–63851. https://doi.org/10.1109/ACCESS.2019.2906402

Rakhiemah, A. N., Zharifah, N., Shidiq, M., Pradnyaswari, I., Rizaldi, M. I., & Suryadi, B. (2024). Policy Brief: Progress of Carbon Pricing in ASEAN to Support the Shift Towards a Low Carbon Economy. ASEAN Centre for Energy (ACE).

Ritchie, H. (2020). Sector by sector: Where do global greenhouse gas emissions come from? Our World in Data. https://ourworldindata.org/ghg-emissions-by-sector

Ryan, S. J., Carlson, C. J., Tesla, B., Bonds, M. H., Ngonghala, C. N., Mordecai, E. A., Johnson, L. R., & Murdock, C. C. (2021). Warming temperatures could expose more than 1.3 billion new people to Zika virus risk by 2050. Global Change Biology, 27(1), 84–93. https://doi.org/10.1111/gcb.15384

Sakti, A. D., Rohayani, P., Izzah, N. A., Toya, N. A., Hadi, P. O., Octavianti, T., Harjupa, W., Caraka, R. E., Kim, Y., Avtar, R., Puttanapong, N., Lin, C.-H., & Wikantika, K. (2023). Spatial integration framework of solar, wind, and hydropower energy potential in Southeast Asia. Scientific Reports, 13(1), 340. https://doi.org/10.1038/s41598-022-25570-y

Seddighi, S., Anthony, E. J., Seddighi, H., & Johnsson, F. (2023). The interplay between energy technologies and human health: Implications for energy transition. Energy Reports, 9, 5592–5611. https://doi.org/10.1016/j.egyr.2023.04.351

Sovacool, B. K., Griffiths, S., Kim, J., & Bazilian, M. (2021). Climate change and industrial F-gases: A critical and systematic review of developments, sociotechnical systems and policy options for reducing synthetic greenhouse gas emissions. Renewable and Sustainable Energy Reviews, 141, 110759. https://doi.org/10.1016/j.rser.2021.110759

Statista. (2023). Territorial carbon dioxide (CO2) emissions in Southeast Asia from 1960 to 2021, by country. https://www.statista.com/statistics/1288198/asean-co2-emissions-by-country/

Sun, X., Pan, X., Jin, C., Li, Y., Xu, Q., Zhang, D., & Li, H. (2022). Life Cycle Assessment-based carbon footprint accounting model and analysis for integrated energy stations in China. International Journal of Environmental Research and Public Health, 19(24), 16451. https://doi.org/10.3390/ijerph192416451

Thompson, L. G. (2010). Climate change: The evidence and our options. The Behavior Analyst, 33(2), 153–170. https://doi.org/10.1007/BF03392211

Tollefson, J. (2021). IPCC climate report: Earth is warmer than it’s been in 125,000 years. Nature, 596(7871), 171–172. https://doi.org/10.1038/d41586-021-02179-1

Tong, D., Farnham, D. J., Duan, L., Zhang, Q., Lewis, N. S., Caldeira, K., & Davis, S. J. (2021). Geophysical constraints on the reliability of solar and wind power worldwide. Nature Communications, 12(1), 6146. https://doi.org/10.1038/s41467-021-26355-z

Turconi, R., Boldrin, A., & Astrup, T. (2013). Life cycle assessment (LCA) of electricity generation technologies: Overview, comparability and limitations. Renewable and Sustainable Energy Reviews, 28, 555–565. https://doi.org/10.1016/j.rser.2013.08.013

Uji, K. (2012). The health impacts of climate change in Asia-Pacific. UNDP.

Van De Ven, D.-J., Capellan-Peréz, I., Arto, I., Cazcarro, I., De Castro, C., Patel, P., & Gonzalez-Eguino, M. (2021). The potential land requirements and related land use change emissions of solar energy. Scientific Reports, 11(1), 2907. https://doi.org/10.1038/s41598-021-82042-5

Venkatappa, M., Sasaki, N., Han, P., & Abe, I. (2021). Impacts of droughts and floods on croplands and crop production in Southeast Asia – An application of Google Earth Engine. Science of The Total Environment, 795, 148829. https://doi.org/10.1016/j.scitotenv.2021.148829

Wang, D., Chen, Y., Jarin, M., & Xie, X. (2022). Increasingly frequent extreme weather events urge the development of point-of-use water treatment systems. Npj Clean Water, 5(1), 36. https://doi.org/10.1038/s41545-022-00182-1

Zambrano-Medina, Y. G., Avila-Aceves, E., Perez-Aguilar, L. Y., Monjardin-Armenta, S. A., Plata-Rocha, W., Franco-Ochoa, C., & Chávez-Martínez, O. (2024). The impact of climate change on crop productivity and adaptation and mitigation strategies in agriculture. In S. Kanga, S. K. Singh, K. Shevkani, V. Pathak, & B. Sajan (Eds.), Transforming Agricultural Management for a Sustainable Future (1–20). Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-63430-7_1

Zavyalova, E. B., & Li, J. (2024). Carbon emission tax or carbon emission market: which is better? In B. S. Sergi, E. G. Popkova, A. A. Ostrovskaya, A. A. Chursin, & Y. V. Ragulina (Eds.), Ecological Footprint of the Modern Economy and the Ways to Reduce It (77–81). Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-49711-7_14

Zheng, C., & Khoo, C. G. (2022). Southeast Asia’s new energy policy announcements in pursuing clean energy transition. S&P Global. https://www.spglobal.com/commodityinsights/en/ci/research-analysis/southeast-asias-new-energy-policy-announcements-in-pursuing.html

Zhou, M., & Wang, S. (2024). The risk of concurrent heatwaves and extreme sea levels along the global coastline is increasing. Communications Earth & Environment, 5(1), 144. https://doi.org/10.1038/s43247-024-01274-1

Published
2025-02-26
How to Cite
Hendriarto, S., Manap, Y. S. A., Runtukahu, Y. E., & Utomo, R. N. C. (2025). Harnessing Carbon Trading and Life Cycle Assessments for Renewable Energy Transition in Southeast Asia. Indonesian Journal of Energy, 8(1), 1-15. https://doi.org/10.33116/ije.v8i1.248